Valentine day

VALENTINE DAY (HARI BERKASIH SAYANG)

Menurut pandangan Islam

(di sadur dari http://tanbihul_ghafilin.tripod.com/valentineday.htm)

Benarkah ia hanya kasih sayang belaka ?

 

Dan jika kamu menuruti kebanyakan orang-orang di muka bumi ini, nescaya mereka akan menyesatkanmu dari jalan Allah. Mereka tidak lain hanyalah mengikuti prasangka belaka, dan mereka tidak lain hanyalah berdusta (terhadap Allah).” (Surah Al-An’am : 116)

 

Hari ‘kasih sayang’ yang dirayakan oleh orang-orang Barat pada tahun-tahun terakhir disebut ‘Valentine Day’ amat popular dan merebak di pelusuk Indonesia bahkan di Malaysia juga. Lebih-lebih lagi apabila menjelangnya bulan Februari di mana banyak kita temui jargon-jargon (simbol-simbol atau  iklan-iklan) tidak Islami hanya wujud demi untuk mengekspos (mempromosi) Valentine. Berbagai tempat hiburan bermula dari diskotik(disko/kelab malam), hotel-hotel, organisasi-organisasi mahupun kelompok-kelompok kecil; ramai yang berlumba-lumba menawarkan acara untuk merayakan Valentine. Dengan  dukungan(pengaruh) media massa seperti surat kabar, radio mahupun televisyen; sebagian besar orang Islam juga turut dicekoki(dihidangkan) dengan iklan-iklan Valentine Day.

 SEJARAH VALENTINE:

Sungguh merupakan hal yang ironis(menyedihkan/tidak sepatutnya terjadi) apabila telinga kita mendengar bahkan kita sendiri ‘terjun’ dalam perayaan Valentine tersebut tanpa mengetahui sejarah Valentine itu sendiri. Valentine sebenarnya adalah seorang martyr (dalam Islam disebut ‘Syuhada’) yang kerana kesalahan dan bersifat ‘dermawan’ maka dia diberi gelaran Saint atau Santo.

Baca lebih lanjut

Fisika Quantum

Albert Einstein

Albert Einstein

author: unknown

Anda barangkali terkejut tentang hubungan kekuatan pikiran dan fisika quantum. Tulisan ini bukan semata tentang kekuatan pikiran Anda, tetapi tentang kesemuanya: Anda, saya, kucing dan bahkan seluruh alam semesta. Segalanya yang bisa Anda lihat, sentuh, cium, dengar dan cicipi bisa dijelaskan melalui fisika quantum.
Apakah fisika quantum?
Fisika Quantum ialah ilmu yang mempelajari blok bangunan alam semesta; ilmu yang menjelaskan bagaimana keseluruhan di dunia ini hadir sebagai kenyataan..Hal ini menyangkut benda2 sangat kecil yang membentuk dunia secara keseluruhan.
Segalanya yang Anda lihat bukanlah benda padat seperti yang terlihat. Kembali pada pelajaran sekolah, kita diajarkan bahwa setiap benda padat terdiri dari molekul2 dan molekul2 itu terdiri dari atom2. Jadi berarti lengan anda atau kursi yang anda duduki sekarang adalah terdiri dari atom2 yang sangat kecil yang tidak bisa terlihat dengan mata telanjang. Atom2 yang tadinya dikatakan sebagai benda terkecil yang ada ternyata terdiri lagi dari partikel sub atom, yang tidak memiliki kepadatan sama sekali.
Mereka pada hakekatnya, kumpulan atau gelombang2 informasi dan konsentrasi energi. Jadi tangan atau kursi yang anda duduki adalah tidak lain dari energi dan informasi.
Hal ini mungkin terasa sulit dipahami pertama kalinya; Saya berada pada persimpangan seperti anda sekarang. Bagaiman bisa segalanya yang padat terbuat dari energi? Baik, hal itu sederhananya dikarenakan setiap peristiwa yang terjadi dalam tingkat quantum berada pada kecepatan cahaya yang pada kecepatan ini, adalah diluar kemampuan indera kita untuk memproses segalanya secara detil.
Fenomena ini mencipatakan sebuah illusi yang membuat persepsi yang seolah olah benda padat itu kenyataan padahal sebenarnya bukan. Jadi apakah realitasnya?
Untuk itu, dapat dikatakan bahwa seluruh dunia fisik dimana Anda berada termasuk diri Anda sendiri adalah terdiri dari bukan apa-apa kecuali energi yang bergetar pada frekuensi yang berbeda. Apa yang membuat perbedaan antara kau dan aku atau kursi adalah perbedaan frekuensi yang masing-masing dari kita yang bergetar. Sekali lagi, aku tahu ini sulit untuk diterima tetapi bagaimanapun ini adalah kebenaran.
Jika Anda tidak dapat menerima ide di atas, mari kita lihat persamaan terkenal Albert Einstein, E = MC2. Energi (E) setara dengan Massa (M) kali kuadrat Kecepatan Cahaya (C). Persamaan ini hanya memberitahu kita bahwa baik energi dan materi (massa) mengacu pada hal yang sama hanya dalam bentuk yang berbeda, energi setara dengan massa. Semua yang terlihat di seluruh alam semesta adalah manifestasi dari energi dan informasi.
Saya berharap bahwa Anda tidak tersesat di dunia kuantum. Berikut fakta lain tentang partikel subatom.
Salah satu fakta yang paling menarik tentang partikel subatom yang juga dikenal sebagai kuanta adalah bahwa, mereka tidak baik partikel dan gelombang; mereka keduanya.
Dalam usaha untuk mengukur sifat-sifat partikel subatom, sekelompok ilmuwan menemukan bahwa, tergantung pada bagaimana mereka berusaha untuk mengukur, mereka menemukan bahwa kuanta ini adalah partikel partikel ketika sebuah alat pengukur digunakan dan di sisi lain, kuanta ini adalah gelombang ketika gelombang-alat pengukuran yang digunakan.
Fakta yang paling mengejutkan tentang hal ini adalah atom tidak memiliki sifat seperti gelombang dan gelombang tidak memiliki sifat seperti partikel. Mereka adalah dua barang yang sama sekali bertentangan.
Apa pun yang diinginkan oleh ilmuwan untuk terjadi, seperti itu pula hasilnya. Atau dengan kata lain, para ilmuwan menentukan hasil percobaan melalui partisipasi mereka dalam memilih peralatan pengukuran. The partikel-partikel subatomik menjadi apa pun yang mereka berusaha untuk mengukur dan dengan demikian, realitas dibentuk oleh mereka sendiri!
Sekarang Anda bisa melihat bahwa semuanya terhubung dengan segala sesuatu yang lain. Pikiran Anda membentuk realitas Anda (seperti apa yang para ilmuwan menemukan dalam percobaan mereka).
Dunia ini tidak benar-benar ada di luar sana, hal itu ada dalam diri Anda dan Anda memilih dunia Anda dengan hanya melihat dunia dengan cara Anda melihatnya dalam pikiran Anda, seperti para ilmuwan mencoba untuk mengukur sifat-sifat partikel subatom.
Anda dapat mempengaruhi hasil dunia Anda dengan mengubah cara Anda melihatnya. Energi tidak memiliki bentuk dan pikiran Anda membentuknya ketika Anda saat itu mengamati mereka.
Terakhir, penemuan partikel subatom juga mengarah pada kutipan yang terkenal, “Jika Anda dapat melihatnya di pikiran Anda, Anda dapat memegangnya di tangan Anda” dan itu sangat menakjubkan.

Ulang Tahun Daquerre

Louis_Daguerre

Louis_Daguerre

TEMPO Interaktif,- Mesin pencari Google hari ini, Jumat 18 November 2011, mendedikasikan halamannya untuk menghormati Louis Daguerre, seorang tokoh dunia di bidang fotografi. Itu dibuktikan dengan pemuatan sebuah desain bertema karya fotografi lengkap dengan figura. Foto ilustrasi itu menunjukkan sebuah keluarga besar berfoto mengabadikan momen yang mereka anggap bersejarah. Louis Daguerre atau dikenal dengan nama lengkap Louis Jacques Mande Daguerre dilahirkan di Cormeilles-en-Parisis, Val-d’Oise, Prancis, pada 18 November 1787. Selain dikenal sebagai seniman, dia juga fisikawan andal yang menemukan metode sekaligus proses pembuatan foto publikasi komersial pertama di dunia. ‘Daguerreotype“, begitu metode ini terngiang hingga kini. Daguerrotype diciptakan Louis Daguerre bersama temannya, Nicophore Niepce, pada 1834. Niepce adalah orang yang pertama memproduksi dan menghasilkan gambar fotografi dari kamera Obscura dengan menggunakan Asphaltum pada pelat tembaga yang sensitif dengan minyak lavender yang menggandung eksposur yang sangat panjang. Gambar yang dihasilkan dari sistem Daguerreotype ini sendiri terbuat dari amalgam atau Alloy, yaitu campuran dari merkuri dan perak. Uap merkuri yang dihasilkan dari kolam yang berisi air raksa yang dipanaskan digunakan untuk mengembangkan pelat yang terdiri dari pelat tembaga dengan lapisan perak yang tipis dan digulung di dalam kontak yang sebelumnya telah disensitifkan terhadap cahaya dengan uap iodium, sehingga membentuk kristal perak iodida pada permukaan piring atau lempeng perak. Kekuatan paparan kemudian dikurangi dengan menggunakan bromin untuk membentuk kristal perak bromida dan dengan mengganti lensa Chevalier dengan ukuran yang jauh lebih besar, dan lensa cepat yang dirancang oleh Petzval. Gambar yang terbentuk di atas lempengan perak tadi terlihat seperti kaca. Sayangnya gambar ini dapat dengan mudah terhapus dengan jari dan mudah dioksidasi oleh udara, sehingga sejak awal proses Daguerreotype ini dilakukan di ruang tertutup dan hasilnya dibingkai dengan penutup kaca. Daguerre akhirnya mengumumkan terobosan baru berupa proses Daguerreotype, setelah bertahun-tahun bereksperimen, pada 1839. Akademi Ilmu Pengetahuan Prancis mengumumkan proses tersebut pada 7 Januari tahun yang sama. Hak paten yang dimiliki Daguerre diakuisisi oleh Pemerintah Prancis, sehingga pada 19 Agustus 1839 Pemerintah Prancis mengumumkan penemuan Daguerre dinyatakan sebagai hadiah alias gratis ditiru warga dunia. Daguerre meninggal dunia pada 10 Juli 1851 karena serangan jantung di Bry-sur-Marne, 12 kilometer dari Paris. Sebuah monumen menandai kuburannya di sana. Nama Daguerre adalah salah satu dari 72 nama yang diabadikan di menara Eiffel. WIKIPEDIA | RUDY

Idul Adha

Menguji Keikhlasan

Sabtu, 5 November 2011
IDUL Adha adalah hari bersejarah bagi umat Islam. Hari besar yang bertepatan dengan hari Minggu (6/11) itu akan dirayakan umat dengan pemotongan hewan kurban. Yang mampu membantu yang miskin, berbagi antara sesama.

Bagi yang mampu, kurban merupakan kewajiban. Kewajiban yang tak boleh asal terlaksana. Hewan kurban harus memenuhi persyaratan-dari sisi umur, kesehatan, dan lainnya. Harus sempurna, tanpa cacat.

Kurban menuntut keikhlasan. Itulah yang dicontohkan Nabi Ibrahim AS, yang tidak hanya mempertaruhkan harta benda, tetapi mengalahkan rasa sayang dan cintanya kepada anak kesayangannya (Nabi Ismail AS), demi kepatuhannya terhadap Allah SWT. Pengurbanan yang dilakukan Nabi Ibrahim luar biasa, dan Allah akhirnya meloloskan beliau dari ujian dengan, mengganti putranya sebagai kurban dengan seekor hewan ketika hendak disembelih.

Melalui kurban, Nabi Ibrahim AS mencontohkan kepada umat bahwa kepasarahan dan keikhlasan adalah nomor satu, tidak dapat ditawar-tawar. Kewajiban, kepatuhan terhadap Allah Swt tidak boleh dinomorduakan. Islam menanamkan bahwa shalat, ibadah, kehidupan, dan kematian (bagi seluruh pengikutnya) hanya semata-mata untuk Allah.

Umat Islam tidak sepantasnya (tidak boleh) memisahkan kehidupan beragama dan bermasyarakat. Apa yang dilakukan dalam kehidupan sehari-hari itu harus mencerminkan kehidupan beragama. Tanggung jawab harus dilaksanakan, siapa pun dia. Apakah penguasa (presiden dan jajarannya), pengusaha, legislatif, yudikatif, maupun masyarakat biasa.

Selama ini, di Nusantara ini, antara kehidupan beragama dan kehidupan bermasyarakat bagi banyak pihak- apakah pejabat, tokoh masyarakat, rakyat-dipisahkan bak air dan minyak. Dalam beragama, mereka melakukan segala kewajiban, tetapi dalam keseharian tetap saja melanggar larangan agama, termasuk mencuri dan korupsi.

Selayaknya hari besar Islam mengingatkan semua umat terhadap kewajiban, termasuk saat memasuki Idul Adha pada bulan Zulhijah 1432 Hijriah sekarang. Jangan hanya menandai hari besar ini dengan pelaksanaan haji (bagi yang diberi kesempatan) di Tanah Suci, shalat sunnah Idul Adha, dan berkurban dengan memotong hewan, tetapi jadikanlah bulan bersejarah tersebut untuk mengasah raga dan jiwa.

Bagaimana seorang pejabat negara mengklaim diri seorang mukmin jika dalam keseharian tidak pernah melaksanakan tanggung jawabnya. Bagaimana presiden, menteri, serta jajarannya di eksekutif mengaku amanah jika yang dilakukan terhadap rakyat hanya janji, bahkan korupsi. Begitu pun dengan kalangan legislatif (DPR) dan yudikatif (penegak hukum).

Karena itu, alangkah baiknya Idul Adha kali ini dijadikan perenungan. Pahamilah arti sesungguhnya dari Hari Raya Kurban, bukannya justru dijadikan untuk pamer, apalagi digunakan untuk menghina kaum miskin . Bersihkan harta atau kekayaan dengan berbagi, berkurban. Jadikan Idul Adha untuk menumbuhsuburkan ketakwaan.

Islam adalah agama yang penuh kasih sayang, yang menuntut umatnya saling bantu. Menuntut tanggung jawab, kejujuran, tak membedakan si kaya dan miskin, pejabat atau rakyat. Jika ini yang terjadi maka ini akan jauh dari kesulitan. Semoga.***

Indonesia Wins Two Medals at Astronomy Olympiad

SURABAYA, KOMPAS.com – A team of Indonesian Senior High School (SMA) students won the silver and copper medal in the Fifth International Olympiad on Astronomy and Astrophysics (IOAA) in Katowice and Krakow, Poland.

Education Ministry special staff Sukemi said in a press release in Surabaya on Tuesday that two silver medals were won by Ko Matias Adrian from SMA 2, Bekasi, and Raymond Djajalaksana of SMAK Penabur, Jakarta.

“One copper medal was won by M. Wildan Ghafari of SMA Semesta, Semarang,” he said when welcoming the team from Poland Monday night. The team was also welcomed by other Indonesian education authorities at Soekarno-Hatta international airport in Jakarta.

“Participating in the Olympics were 29 teams of 26 countries with 134 participants, and Indonesia sent five SMA students from Bekasi, Jakarta, Semarang, Gresik, and Surabaya,” he said.

The five students are Ko Matias Adrian (SMA 5, Bekasi), Raymond Djajalaksana (SMAK IPEKA Sunter, Jakarta), M. Wildan Ghafari (SMA Semesta, Semarang), Miftahul Hilmi (SMA 1, Gresik), and James Lim (SMAK Petra, Surabaya).

“They had been accompanied by two team leaders of Bandung Institute of Technology (ITB) Dr Hakim L. Malasan and Dr Mohammad Ikbal,” he said.

Indonesia on behalf of Dr Chatief Kunjaya had been elected IOAA President for the 2012-2016 period, and IOAA Secretary General was Dr Grzegorz Stachowski from Poland.

On the occasion, Mukhlis Catio hoped that with Indonesia elected as IOAA president will have a positive effect on the development of astronomy and astrophysics in Indonesia.

“Besides, we also hoped Indonesia would increase its performances in IOAA events, as the tasks of an IOAA president includes making and collecting questions and problems for similar olympics,” he said.

Mikroskop Sinar-X Setajam Mata Superman

Research centers and laboratories at the Unive...

UCLA San Diego

SAN DIEGO, KOMPAS.com – Menciptakan peralatan untuk membantu manusia melihat setajam Superman bukan lagi mimpi. Ashish Tripathi, mahasiswa pascasarjana University of California di San Diego, AS menciptakan mikroskop sinar-X dengan kemampuan melihat sangat tajam, hingga ketelitian sepersatu miliar meter.

Mikroskop ini tidak membutuhkan lensa. Untuk mencitrakan suatu objek, mikroskop menggunakan program komputer yang bisa mengubah pola pantulan sinar X menjadi gambar objek yang mudah diinterpretasikan, menyajikan citra dalam skala atom.

Oleg Shpyrko, fisikawan yang menjadi pembimbing penelitian mengatakan, mikroskop berperan dalam nanoteknologi. “Kita bisa membuat sesuatu dalam skala nano, tapi kita tidak bisa melihat dengan baik. Mikroskop memungkinkan karakterisasi material nano,” kata Shpyrko.

Kemampuan mikroskop ini telah diuji. Peneliti membuat film berbahan besi dan gadolinium. Setelah dilihat dengan mikroskop, gabungan kedua elemen itu berhasil terlihat sebagai pola medan magnet yang berkelok-kelok, menyerupai sidik jari.

Shpyrko mengatakan, mikroskop ini bisa dipakai untuk melihat bagaimana material satu dan lainnya bergabung sehingga bisa mengupayakan efisiensi produksi material skala nano. Aplikasi lain ialah melihat karakter magnetik material untuk mengupayakan magnetic data storage lebih baik.

Mikroskop ini juga bisa memecahkan beberapa misteri. Misalnya, kemampuan baterai selalu menurun karena degenerasi interface antara elektroda dan elektrolit, tapi tak ada yang tahu pasti prosesnya. Dengan mikroskop ini sebab dan solusi mengatasinya bisa diamati.

“Dengan mikroskop ini, kita bisa melihat pada interface yang paling sulit,” kata Shpyrko seperti dilansir situs Foxnews, Jumat (19/8/2011). Hasil penelitian ini dimuat dalam Proceedings of the National Academy of Sciences edisi teranyar.

Layu sebelum berkembang

LAYU SEBELUM BERKEMBANG

Hatiku hancur
Mengenang dikau
Berkeping-keping
Jadinya…
Kini air mata
Jatuh bercucuran
Tiada lagi harapan

Tiada seindah
Waktu itu…
Dunia berseri-seri
Malam bagai siang
Seterang hatiku
Penuh harapan
Padamu

Kini hancur berderai
Kepedihan berantai

Kuncup di hatiku
Yang lama kusimpan
Hancur kini
Sebelum berkembang…

Mengapa ini
Harus terjadi
Di tengah
Kebahagiaan
Ingin kurasakan
Lebih lama lagi
Hidup bersama
Denganmu…

Hidup bersama
Denganmu

Bonus Song “Widuri” Bob Tutupoli

Archimedes

Archimedes, Bapak IPA Eksperimental

Archimedes dari Syracusa (sekitar 287 SM – 212 SM) Ia belajar di kota Alexandria, Mesir. Pada waktu itu yang menjadi raja di Sirakusa adalah Hieron II, sahabat Archimedes. Archimedes sendiri adalah seorang matematikawan, astronom, filsuf, fisikawan, dan insinyur berbangsa Yunani. Ia dibunuh oleh seorang prajurit Romawi pada penjarahan kota Syracusa, meskipun ada perintah dari jendral Romawi, Marcellus bahwa ia tak boleh dilukai. Sebagian sejarahwan matematika memandang Archimedes sebagai salah satu matematikawan terbesar sejarah, mungkin bersama-sama Newton dan Gauss.

Penemuannya

Pada suatu hari Archimedes dimintai Raja Hieron II untuk menyelidiki apakah mahkota emasnya dicampuri perak atau tidak. Archimedes memikirkan masalah ini dengan sungguh-sungguh. Hingga ia merasa sangat letih dan menceburkan dirinya dalam bak mandi umum penuh dengan air. Lalu, ia memperhatikan ada air yang tumpah ke lantai dan seketika itu pula ia menemukan jawabannya. Ia bangkit berdiri, dan berlari sepanjang jalan ke rumah dengan telanjang bulat. Setiba di rumah ia berteriak pada istrinya, “Eureka! Eureka!” yang artinya “sudah kutemukan! sudah kutemukan!” Lalu ia membuat hukum Archimedes.

Dengan itu ia membuktikan bahwa mahkota raja dicampuri dengan perak. Dan tukang yang membuatnya dihukum mati.

Penemuan yang lain adalah tentang prinsip matematis tuas, sistem katrol yang didemonstrasikannya dengan menarik sebuah kapal sendirian saja. Ulir penak, yaitu rancangan model planetarium yang dapat menunjukkan gerak matahari, bulan, planet-planet, dan kemungkinan konstelasi di langit.

Di bidang matematika, penemuannya terhadap nilai phi lebih mendekati dari ilmuan sebelumnya, yaitu 223/71 dan 220/70. Archimedes adalah orang yang mendasarkan penemuannya dengan eksperimen. Sehingga, ia dijuluki Bapak IPA Eksperimental.

MAX PLANCK 1858-1947

Max Planck was guest in Rumestluns

Image via Wikipedia

MAX PLANCK 1858-1947 Bulannya Desember, tahunnya 1900. Dunia ilmu terperanjat dan terlompat dari tempat duduknya. Apa yang terjadi? Seorang ahli fisika Jerman, Max Planck, umumkan dia punya hipotesa yang berani. Dia bilang radiant energi (energi gelombang cahaya) tidaklah mengalir dalam arus yang kontinyu, tetapi terdiri dari potongan-potongan yang disebutnya quanta. Hipotesa Planck yang bertentangan dengan teori klasik tentang cahaya dan elektro magnetik ini merupakan titik mula dari teori kuantum yang sejak itu merevolusionerkan bidang fisika dan menyuguhkan kita pengertian yang lebih mendalam tentang alam benda dan radiasi. Dilahirkan tahun 1858 di kota Kiel, Jerman, dia belajar di Universitas Berlin dan Munich, peroleh gelar Doktor dalam ilmu fisika dengan summa cum laude dari Universitas Munich selagi berumur baru dua puluh satu tahun. Sebentar dia mengajar di Universitas Munich, kemudian di Universitas Kiel. Di tahun 1889 dia jadi mahaguru Univeristas Berlin sampai pensiunnya tiba tatkala usianya mencapai tujuh puluh. Itu tahun 1928. Planck, seperti halnya ilmuwan lain, tertarik dengan “radiasi kuantitas gelap,” julukan buat radiasi elektromagnetik dikeluarkan oleh obyek gelap sempurna apabila dipanaskan. (Suatu obyek gelap sempurna dijelaskan sebagai sesuatu yang tidak memantulkan cahaya, tetapi sepenuhnya menyerap semua cahaya yang jatuh di atasnya). Percobaan-percobaan para ahli fisika telah membuat ukuran yang hati-hati perihal radiasi yang dikeluarkan oleh obyek itu bahkan sebelum Planck bekerja dalam masalah itu. Hasil karya Planck pertama adalah penemuannya dalam hal formula secara aljabar yang ruwet yang dengan tepat menggambarkan “radiasi kuantitas gelap.” Formula ini yang kerap digunakan dalam teori fisika sekarang dengan rapi meringkas data-data percobaan. Tetapi ada satu masalah: hukum fisika yang sudah diterima meramalkan adanya suatu formula yang samasekali berbeda. Planck berkecimpung dalam-dalam terhadap soal ini dan akhirnya tampil dengan teori baru yang radikal: energi radiant cuma keluar pada pergandaan yang tepat dari unit elementer yang disebut Planck “kuantum”. Menurut teori Planck, ukuran kuantum cahaya tergantung pada frekuensi cahaya (misalnya pada warnanya), dan juga berimbang dengan kuantitas fisik yang oleh Planck diringkas dengan “h”, tetapi sekarang disebut “patokan Planck.” Hipotesa Planck amatlah berlawanan dengan apa yang jadi konsep umum fisika. Tetapi, dengan penggunaan ini dia mampu menemukan keaslian teoritis yang tepat daripada formula yang benar tentang “radiasi kuantitas gelap.” Teori Planck begitu revolusioner, yang tak syak lagi bisa dianggap suatu gagasan eksentrik kalau saja Planck bukan seorang ahli fisika yang mantap dan konservatif. Kendati hipotesanya terdengar aneh, dalam soal khusus ini jelas merupakan penuntun ke arah formula yang benar. Pada mulanya, umumnya ahli fisika (termasuk Planck sendiri) melihat hipotesanya sebagai tak lain dari sebuah fiksi matematik yang cocok. Sesudah beberapa tahun, hal itu berubah sehingga konsepsi Planck tentang kuantum dapat digunakan untuk pelbagai fenomena fisik selain untuk “radiasi kuantitas gelap.” Einstein menggunakan konsep ini di tahun 1905 dalam rangka menjelaskan efek fotoelektrika, dan Niels Bohr menggunakannya di tahun 1913 dalam teorinya tentang struktur atom. Menjelang tahun 1918 tatkala Planck peroleh Hadiah Nobel, jelaslah sudah bahwa hipotesanya pada dasarnya benar dan itu mempunyai arti penting yang fundamental dalam teori fisika. Sikap anti Nazi Planck yang keras membuat kedudukannya berabe di masa pemerintahan Hitler. Anak laki-lakinya dihukum mati di awal tahun 1945 akibat peranannya dalam komplotan para perwira yang punya rencana membunuh Hitler. Planck sendiri mati tahun 1947, pada umur delapan puluh sembilan tahun. Perkembangan mekanika kuantum mungkin yang paling penting dari perkembangan ilmu pengetahuan dalam abad ke-20, lebih penting ketimbang teori relativitas Einstein. Patokan “h” Planck memegang peranan penting dalam teori fisika dan sekarang dihimpun jadi dua atau tiga patokan fisika paling dasar. Patokan itu muncul dalam teori struktur atom, dalam prinsip “ketidakpastian” Heisenberg, dalam teori radiasi dan dalam banyak lagi formula ilmiah. Perkiraan pertama Planck mengenai nilai jumlah adalah dalam batas perhitungan 2% yang diterima sekarang. Planck umumnya dianggap bapak mekanika kuantum. Kendati dia memainkan peranan tak seberapa dalam perkembangan teori selanjutnya, adalah keliru mengecilkan arti Planck. Jalan mula yang disuguhkannya sungguh penting. Dia membebaskan pikiran orang dari anggapan-anggapan keliru yang ada sebelumnya, dan dia memungkinkan orang-orang sesudahnya menyusun teori yang jauh lebih jernih daripada yang sekarang kita miliki. Situs Web

Paul Dirac : Si Jenius Dalam Sejarah Fisika

19 November 2008

Paul Andrien Maurice Dirac

Paul Andrien Maurice Dirac

Lebih dari seratus tahun yang lalu, tepatnya pada 8 Agustus 1902, lahirlah seorang anak yang diberi nama Paul Andrien Maurice Dirac di Bristol Inggris. Siapa sangka di kemudian hari anak yang bernama Paul Dirac ini akan menjadi fisikawan besar Inggris yang namanya dapat disejajarkan dengan Newton, Thomson, dan Maxwell. Melalui teori kuantumnya yang menjelaskan tentang elektron, Dirac menjelma menjadi fisikawan ternama di dunia dan namanya kemudian diabadikan bagi persamaan relativistik yang dikembangkannya yaitu persamaan Dirac. Tulisan ini dibuat untuk mengenang kembali perjalanan kariernya yang cemerlang dalam bidang fisika teori.

Dirac kecil tumbuh dan besar di Bristol. Ayahnya yang berasal dari Swiss bernama Charles lahir di kota Monthey dekat Geneva pada tahun 1866 dan kemudian pindah ke Bristol Inggris, untuk menjadi guru bahasa Prancis di Akademi Teknik Merchant Venturers. Ibunya bernama Florence Holten, wanita yang lahir di Liskeard pada tahun 1878 dan menjadi pustakawan di kota Bristol. Ayah dan Ibu Dirac menikah di Bristol pada tahun 1899 dan memiliki tiga orang, anak dua laki-laki (dimana Paul adalah yang lebih muda) dan seorang perempuan. Setelah menyelesaikan pendidikan SMA dan sekolah teknik, Paul Dirac melanjutkan studi di Jurusan teknik elektro Universitas Bristol pada tahun 1918 untuk belajar menjadi insinyur teknik elektro. Pilihannya ini diambil berdasarkan anjuran ayahnya yang menginginkan Paul mendapatkan pekerjaan yang baik.

Dirac menyelesaikan kuliahnya dengan baik, tetapi dia tidak mendapatkan pekerjaan yang cocok paska berkecamuknya perang dunia pada saat itu. Keinginannya adalah pergi ke Universitas Cambridge untuk meperdalam matematika dan fisika. Dia diterima di akademi St John Cambridge pada tahun 1921, tetapi hanya ditawarkan beasiswa yang tidak memadai untuk menyelesaikan kuliahnya. Untungnya dia sanggup mengambil kuliah matematika terapan di Universitas Bristol selama dua tahun tanpa harus membayar uang kuliah dan tetap dapat tinggal di rumah. Setelah itu pada tahun 1923 dia berhasil mendapatkan beasiswa penuh di akademi St John dan dana penelitian dari Departemen perindustrian dan sains, tetapi dana inipun belum bisa menutupi jumlah biaya yang diperlukan untuk kuliah di Cambridge. Pada akhirnya Paul Dirac berhasil mewujudkan keinginannya kuliah di Akademi St John karena adanya permintaan dari pihak universitas. Di Cambridge Paul Dirac mengerjakan semua pekerjaan sepanjang hidupnya sejak kuliah paska sarjananya pada tahun 1923 sampai pensiun sebagai profesor (lucasian professor) pada tahun 1969. Dirac membuktikan bahwa dirinya pantas mendapatkan beasiswa yang diberikan pihak universitas untuk kuliah di Cambridge.

dirac1Pada tanggal 20 oktober 1984 Paul Dirac meninggal dunia pada usia 82 tahun, sebagai peraih hadiah nobel fisika tahun 1933 dan anggota British order of merit tahun 1973. Paul Dirac merupakan fisikawan teoretis Inggris terbesar di abad ke-20. Pada tahun 1995 perayaan besar diselenggarakan di London untuk mengenang hasil karyanya dalam fisika. Sebuah monumen dibuat di Westminster Abbey untuk mengabadikan namanya dan hasil karyanya, di mana di sini dia bergabung bersama sejumlah monumen yang sama yang dibuat untuk Newton, Maxwell, Thomson, Green, dan fisikawan-fisikawan besar lainnya. Pada monumen itu disertakan pula Persamaan Dirac dalam bentuk relativistik yang kompak. Sebenarnya persamaan ini bukanlah persamaan yang digunakan Dirac pada saat itu, tetapi kemudian persamaan ini digunakan oleh mahasiswanya.

Penemuan yang monumental

Dirac mengukuhkan teori mekanika kuantum dalam bentuk yang paling umum dan mengembangkan persamaan relativistik untuk elektron, yang sekarang dinamakan menggunakan nama beliau yaitu persamaan Dirac. Persamaan ini juga mengharuskan adanya keberadaan dari pasangan antipartikel untuk setiap partikel misalnya positron sebagai antipartikel dari elektron. Dia adalah orang pertama yang mengembangkan teori medan kuantum yang menjadi landasan bagi pengembangan seluruh teori tentang partikel subatom atau partikel elementer. Pekerjaan ini memberikan dasar bagi pemahaman kita tentang gaya-gaya alamiah. Dia mengajukan dan menyelidiki konsep kutub magnet tunggal (magnetic monopole), sebuah objek yang masih belum dapat dibuktikan keberadaannya, sebagai cara untuk memasukkan simetri yang lebih besar ke dalam persamaan medan elektromagnetik Maxwell. Paul Dirac melakukan kuantisasi medan gravitasi dan membangun teori medan kuantum umum dengan konstrain dinamis, yang memberikan landasan bagi terbentuknya Teori Gauge dan Teori Superstring, sebagai kandidat Theory Of Everything, yang berkembang sekarang. Teori-teorinya masih berpengaruh dan penting dalam perkembangan fisika hingga saat ini, dan persamaan dan konsep yang dikemukakannya menjadi bahan diskusi di kuliah-kuliah fisika teori di seluruh dunia.

Dirac bersama Heisenberg, dua orang ysng berjasa dalam pengembangan fisika kuantum

Dirac bersama Heisenberg, dua orang ysng berjasa dalam pengembangan fisika kuantum

Langkah awal menuju teori kuantum baru dimulai oleh Dirac pada akhir September 1925. Saat itu, R H Fowler pembimbing risetnya menerima salinan makalah dari Werner Heisenberg berisi penjelasan dan pembuktian teori kuantum lama Bohr dan Sommerfeld, yang masih mengacu pada prinsip korespondensi Bohr tetapi berubah persamaannya sehingga teori ini mencakup secara langsung kuantitas observabel. Fowler mengirimkan makalah Heisenberg kepada Dirac yang sedang berlibur di Bristol dan menyuruhnya untuk mempelajari makalah itu secara teliti. Perhatian Dirac langsung tertuju pada hubungan matematis yang aneh, pada saat itu, yang dikemukakan oleh Heisenberg. Beberapa pekan kemudian setelah kembali ke Cambridge, Dirac tersadar bahwa bentuk matematika tersebut mempunyai bentuk yang sama dengan kurung poisson (Poisson bracket) yang terdapat dalam fisika klasik dalam pembahasan tentang dinamika klasik dari gerak partikel. Didasarkan pada pemikiran ini dengan cepat dia merumuskan ulang teori kuantum yang didasarkan pada variabel dinamis non-komut (non-comuting dinamical variables). Cara ini membawanya kepada formulasi mekanika kuantum yang lebih umum dibandingkan dengan yang telah dirumuskan oleh fisikawan yang lain.

Pekerjaan ini merupakan pencapaian terbaik yang dilakukan oleh Dirac yang menempatkannya lebih tinggi dari fisikawan lain yang pada saat itu sama-sama mengembangkan teori kuantum. Sebagai fisikawan muda yang baru berusia 25 tahun, dia cepat diterima oleh komunitas fisikawan teoretis pada masa itu. Dia diundang untuk berbicara di konferensi-konferensi yang diselenggarakan oleh komunitas fisika teori, termasuk kongres Solvay pada tahun 1927 dan tergabung sebagai anggota dengan hak-hak yang sama dengan anggota yang lain yang terdiri dari para pakar fisika ternama dari seluruh dunia.

Formulasi umum tentang teori kuantum yang dikembangkan oleh Dirac memungkinkannya untuk melangkah lebih jauh. Dengan formulasi ini, dia mampu mengembangkan teori transformasi yang dapat menghubungkan berbagai formulasi-formulasi yang berbeda dari teori kuantum. Teori tranformasi menunjukkan bahwa semua formulasi tersebut pada dasarnya memiliki konsekuensi fisis yang sama, baik dalam persamaan mekanika gelombang Schrodinger maupun mekanika matriksnya Heisenberg. Ini merupakan pencapaian yang gemilang yang membawa pada pemahaman dan kegunaan yang lebih luas dari mekanika kuantum. Teori transformasi ini merupakan puncak dari pengembangan mekanika kuantum oleh Dirac karena teori ini menyatukan berbagai versi dari mekanika kuantum, yang juga memberikan jalan bagi pengembangan mekanika kuantum selanjutnya. Di kemudian hari rumusan teori transformasi ini menjadi miliknya sebagaimana tidak ada versi mekanika kuantum yang tidak menyertainya. Bersama dengan teori transformasi, mekanika kuantum versi Dirac disajikan dalam bentuk yang sederhana dan indah, dengan struktur yang menunjukkan kepraktisan dan konsep yang elegan, namun berkaitan erat dengan teori klasik. konsep ini menunjukkan kepada kita aspek baru dari alam semesta yang belum pernah terbayangkan sebelumnya.

Karier cemerlang Dirac sesungguhnya telah tampak ketika dia masih berada di tingkat sarjana. Pada saat itu Dirac telah menyadari pentingnya teori relativitas khusus dalam fisika, suatu teori yang menjadikan Einstein terkenal pada tahun 1905, yang dipelajari Dirac dari kuliah yang dibawakan oleh C D Broad, seorang profesor filsafat di Universitas Bristol. Sebagian besar makalah yang dibuat Dirac sebagai mahasiswa paska sarjana ditujukan untuk menyajikan bentuk baru dari rumusan yang sudah ada dalam literatur menjadi rumusan yang sesuai (kompatibel) dengan relativitas khusus. Pada tahun 1927 Dirac berhasil mengembangkan teori elektron yang memenuhi kondisi yang disyaratkan oleh teori relativitas khusus dan mempublikasikan persamaan relativistik yang invarian untuk elektron pada awal tahun 1928.

Persamaan Dirac

Persamaan Dirac

Sebagian fisikawan lain sebenarnya memiliki pemikiran yang sama dengan apa yang dilakukan oleh Dirac, meskipun demikian belum ada yang mampu menemukan persamaan yang memenuhi seperti apa yang telah dicapai oleh Dirac. Dia memiliki argumen yang sederhana dan elegan yang didasarkan pada tujuan bahwa teori tranformasinya dapat berlaku juga dalam mekanika kuantum relativistik – sebuah argumen yang menspesifikasikan bentuk umum dari yang harus dimiliki oleh persamaan relativistik ini, sebuah argumen yang menjadi bagian yang belum terpecahkan bagi semua fisikawan. Teori tranformasinya harus memuat persamaan yang tidak hanya berupa turunan waktu, sementara asumsi relativitas mensyaratkan bahwa persamaannya harus juga dapat linier di dalam turunan ruang. Persamaan Dirac merupakan salah satu persamaan fisika yang paling indah. Profesor Sir Nevill Mott, mantan Direktur Laboratorium Cavendish, baru-baru ini menulis,”persamaan ini bagi saya adalah bagian fisika teori yang paling indah dan menantang yang pernah saya lihat sepanjang hidup saya, yang hanya bisa dibandingkan dengan kesimpulan Maxwell bahwa arus perpindahan dan juga medan elektromagnetik harus ada. Selain itu, persamaan Dirac untuk elektron membawa implikasi penting bahwa elektron harus mempunyai spin ½, dan momen magnetik eh/4pm menjadi benar dengan ketelitian mencapai 0,1%.

dirac_21

Persamaan Dirac dan teori elektronnya masih tetap relevan digunakan sampai sekarang. Perkiraan yang dibuatnya telah dibuktikan dalam sistem atom dan molekul. Telah ditunjukkan juga bahwa hal ini berlaku untuk partikel lain yang memiliki spin yang sama dengan elektron seperti proton, hyperon dan partikel keluarga baryon lainnya. konsep ini dapat diterapkan secara universal dan diketahui dengan baik oleh para fisikawan dan kimiawan, sesuatu yang tidak seorangpun dapat membantahnya. Melihat kenyataan ini, Dirac merasa sudah waktunya untuk menyatakan, ”teori umum mekanika kuantum sudah lengkap sekarang …… hukum-hukum fisika yang yang mendasari diperlukannya teori matematika dari bagian besar fisika dan keseluruhan bagian dari kimia telah diketahui secara lengkap.”

Indahnya Fisika

Dirac menunjukkan kemudian bahwa persamaannya ini mengandung implikasi yang tidak diharapkan bagi suatu partikel. Persamaannya memperkirakan adanya antipartikel, seperti positron dan antiproton yang bermuatan negatif, yaitu suatu objek yang saat ini sudah sangat dikenal di laboratorium fisika energi tinggi. Menurut teorinya, semua partikel memiliki antipartikel tertentu yang terkait dengannya. sebagian besar dari antipartikel ini sekarang telah dibuktikan keberadaannya. Positron dan antiproton adalah sebagian kecil dari antipartikel yang sudah sangat dikenal, keduanya dapat berada dalam kondisi stabil di ruang hampa, dan saat ini digunakan secara luas dalam akselerator penumbuk partikel (collider accelerator) yang dengannya fisikawan mempelajari fenomena yang terjadi dalam fisika energi tinggi.

Dirac dan Persamaan Relativistiknya

Dirac dan Persamaan Relativistiknya

Penting diungkapkan di sini keindahan dari persamaan Dirac. Keindahan ini bisa jadi sulit dirasakan oleh orang yang tidak terbiasa dengan rumus-rumus fisika, tetapi kenyataan ini tidak akan dibantah oleh para fisikawan. Persamaan Dirac adalah salah satu penemuan besar dalam sejarah fisika. Melalui pekerjaannya ini, Dirac memberikan prinsip-prinsip dasar yang memuaskan dalam usaha untuk memahami alam semesta kita. Melalui penemuannya ini nama Dirac akan dikenang selamanya sebagai salah satu fisikawan besar. Suatu monumen telah dibangun untuknya atas jasanya membimbing kita kepada pemahaman tentang salah satu aspek penting gaya dasar yang terkandung di alam semesta yang kita diami ini.

Persamaan Dirac dalam bentuk lain

Persamaan Dirac dalam bentuk lain

Nama Dirac akan dimasukkan dalam catatan sejarah fisika atas kontribusi yang diberikannya kepada dunia sains khususnya fisika berupa dasar-dasar mekanika kuantum dan teori transformasi. Penemuannya menempatkan Dirac di jajaran papan atas fisikawan teori sepanjang masa – seorang jenius yang hebat dalam sejarah fisika.

diterjemahkan dari majalah CERN edisi agustus 2002

Paul Dirac : Si Jenius Dalam Sejarah Fisika

19 November 2008

Paul Andrien Maurice Dirac

Paul Andrien Maurice Dirac

Lebih dari seratus tahun yang lalu, tepatnya pada 8 Agustus 1902, lahirlah seorang anak yang diberi nama Paul Andrien Maurice Dirac di Bristol Inggris. Siapa sangka di kemudian hari anak yang bernama Paul Dirac ini akan menjadi fisikawan besar Inggris yang namanya dapat disejajarkan dengan Newton, Thomson, dan Maxwell. Melalui teori kuantumnya yang menjelaskan tentang elektron, Dirac menjelma menjadi fisikawan ternama di dunia dan namanya kemudian diabadikan bagi persamaan relativistik yang dikembangkannya yaitu persamaan Dirac. Tulisan ini dibuat untuk mengenang kembali perjalanan kariernya yang cemerlang dalam bidang fisika teori.

Dirac kecil tumbuh dan besar di Bristol. Ayahnya yang berasal dari Swiss bernama Charles lahir di kota Monthey dekat Geneva pada tahun 1866 dan kemudian pindah ke Bristol Inggris, untuk menjadi guru bahasa Prancis di Akademi Teknik Merchant Venturers. Ibunya bernama Florence Holten, wanita yang lahir di Liskeard pada tahun 1878 dan menjadi pustakawan di kota Bristol. Ayah dan Ibu Dirac menikah di Bristol pada tahun 1899 dan memiliki tiga orang, anak dua laki-laki (dimana Paul adalah yang lebih muda) dan seorang perempuan. Setelah menyelesaikan pendidikan SMA dan sekolah teknik, Paul Dirac melanjutkan studi di Jurusan teknik elektro Universitas Bristol pada tahun 1918 untuk belajar menjadi insinyur teknik elektro. Pilihannya ini diambil berdasarkan anjuran ayahnya yang menginginkan Paul mendapatkan pekerjaan yang baik.

Dirac menyelesaikan kuliahnya dengan baik, tetapi dia tidak mendapatkan pekerjaan yang cocok paska berkecamuknya perang dunia pada saat itu. Keinginannya adalah pergi ke Universitas Cambridge untuk meperdalam matematika dan fisika. Dia diterima di akademi St John Cambridge pada tahun 1921, tetapi hanya ditawarkan beasiswa yang tidak memadai untuk menyelesaikan kuliahnya. Untungnya dia sanggup mengambil kuliah matematika terapan di Universitas Bristol selama dua tahun tanpa harus membayar uang kuliah dan tetap dapat tinggal di rumah. Setelah itu pada tahun 1923 dia berhasil mendapatkan beasiswa penuh di akademi St John dan dana penelitian dari Departemen perindustrian dan sains, tetapi dana inipun belum bisa menutupi jumlah biaya yang diperlukan untuk kuliah di Cambridge. Pada akhirnya Paul Dirac berhasil mewujudkan keinginannya kuliah di Akademi St John karena adanya permintaan dari pihak universitas. Di Cambridge Paul Dirac mengerjakan semua pekerjaan sepanjang hidupnya sejak kuliah paska sarjananya pada tahun 1923 sampai pensiun sebagai profesor (lucasian professor) pada tahun 1969. Dirac membuktikan bahwa dirinya pantas mendapatkan beasiswa yang diberikan pihak universitas untuk kuliah di Cambridge.

dirac1Pada tanggal 20 oktober 1984 Paul Dirac meninggal dunia pada usia 82 tahun, sebagai peraih hadiah nobel fisika tahun 1933 dan anggota British order of merit tahun 1973. Paul Dirac merupakan fisikawan teoretis Inggris terbesar di abad ke-20. Pada tahun 1995 perayaan besar diselenggarakan di London untuk mengenang hasil karyanya dalam fisika. Sebuah monumen dibuat di Westminster Abbey untuk mengabadikan namanya dan hasil karyanya, di mana di sini dia bergabung bersama sejumlah monumen yang sama yang dibuat untuk Newton, Maxwell, Thomson, Green, dan fisikawan-fisikawan besar lainnya. Pada monumen itu disertakan pula Persamaan Dirac dalam bentuk relativistik yang kompak. Sebenarnya persamaan ini bukanlah persamaan yang digunakan Dirac pada saat itu, tetapi kemudian persamaan ini digunakan oleh mahasiswanya.

Penemuan yang monumental

Dirac mengukuhkan teori mekanika kuantum dalam bentuk yang paling umum dan mengembangkan persamaan relativistik untuk elektron, yang sekarang dinamakan menggunakan nama beliau yaitu persamaan Dirac. Persamaan ini juga mengharuskan adanya keberadaan dari pasangan antipartikel untuk setiap partikel misalnya positron sebagai antipartikel dari elektron. Dia adalah orang pertama yang mengembangkan teori medan kuantum yang menjadi landasan bagi pengembangan seluruh teori tentang partikel subatom atau partikel elementer. Pekerjaan ini memberikan dasar bagi pemahaman kita tentang gaya-gaya alamiah. Dia mengajukan dan menyelidiki konsep kutub magnet tunggal (magnetic monopole), sebuah objek yang masih belum dapat dibuktikan keberadaannya, sebagai cara untuk memasukkan simetri yang lebih besar ke dalam persamaan medan elektromagnetik Maxwell. Paul Dirac melakukan kuantisasi medan gravitasi dan membangun teori medan kuantum umum dengan konstrain dinamis, yang memberikan landasan bagi terbentuknya Teori Gauge dan Teori Superstring, sebagai kandidat Theory Of Everything, yang berkembang sekarang. Teori-teorinya masih berpengaruh dan penting dalam perkembangan fisika hingga saat ini, dan persamaan dan konsep yang dikemukakannya menjadi bahan diskusi di kuliah-kuliah fisika teori di seluruh dunia.

Dirac bersama Heisenberg, dua orang ysng berjasa dalam pengembangan fisika kuantum

Dirac bersama Heisenberg, dua orang ysng berjasa dalam pengembangan fisika kuantum

Langkah awal menuju teori kuantum baru dimulai oleh Dirac pada akhir September 1925. Saat itu, R H Fowler pembimbing risetnya menerima salinan makalah dari Werner Heisenberg berisi penjelasan dan pembuktian teori kuantum lama Bohr dan Sommerfeld, yang masih mengacu pada prinsip korespondensi Bohr tetapi berubah persamaannya sehingga teori ini mencakup secara langsung kuantitas observabel. Fowler mengirimkan makalah Heisenberg kepada Dirac yang sedang berlibur di Bristol dan menyuruhnya untuk mempelajari makalah itu secara teliti. Perhatian Dirac langsung tertuju pada hubungan matematis yang aneh, pada saat itu, yang dikemukakan oleh Heisenberg. Beberapa pekan kemudian setelah kembali ke Cambridge, Dirac tersadar bahwa bentuk matematika tersebut mempunyai bentuk yang sama dengan kurung poisson (Poisson bracket) yang terdapat dalam fisika klasik dalam pembahasan tentang dinamika klasik dari gerak partikel. Didasarkan pada pemikiran ini dengan cepat dia merumuskan ulang teori kuantum yang didasarkan pada variabel dinamis non-komut (non-comuting dinamical variables). Cara ini membawanya kepada formulasi mekanika kuantum yang lebih umum dibandingkan dengan yang telah dirumuskan oleh fisikawan yang lain.

Pekerjaan ini merupakan pencapaian terbaik yang dilakukan oleh Dirac yang menempatkannya lebih tinggi dari fisikawan lain yang pada saat itu sama-sama mengembangkan teori kuantum. Sebagai fisikawan muda yang baru berusia 25 tahun, dia cepat diterima oleh komunitas fisikawan teoretis pada masa itu. Dia diundang untuk berbicara di konferensi-konferensi yang diselenggarakan oleh komunitas fisika teori, termasuk kongres Solvay pada tahun 1927 dan tergabung sebagai anggota dengan hak-hak yang sama dengan anggota yang lain yang terdiri dari para pakar fisika ternama dari seluruh dunia.

Formulasi umum tentang teori kuantum yang dikembangkan oleh Dirac memungkinkannya untuk melangkah lebih jauh. Dengan formulasi ini, dia mampu mengembangkan teori transformasi yang dapat menghubungkan berbagai formulasi-formulasi yang berbeda dari teori kuantum. Teori tranformasi menunjukkan bahwa semua formulasi tersebut pada dasarnya memiliki konsekuensi fisis yang sama, baik dalam persamaan mekanika gelombang Schrodinger maupun mekanika matriksnya Heisenberg. Ini merupakan pencapaian yang gemilang yang membawa pada pemahaman dan kegunaan yang lebih luas dari mekanika kuantum. Teori transformasi ini merupakan puncak dari pengembangan mekanika kuantum oleh Dirac karena teori ini menyatukan berbagai versi dari mekanika kuantum, yang juga memberikan jalan bagi pengembangan mekanika kuantum selanjutnya. Di kemudian hari rumusan teori transformasi ini menjadi miliknya sebagaimana tidak ada versi mekanika kuantum yang tidak menyertainya. Bersama dengan teori transformasi, mekanika kuantum versi Dirac disajikan dalam bentuk yang sederhana dan indah, dengan struktur yang menunjukkan kepraktisan dan konsep yang elegan, namun berkaitan erat dengan teori klasik. konsep ini menunjukkan kepada kita aspek baru dari alam semesta yang belum pernah terbayangkan sebelumnya.

Karier cemerlang Dirac sesungguhnya telah tampak ketika dia masih berada di tingkat sarjana. Pada saat itu Dirac telah menyadari pentingnya teori relativitas khusus dalam fisika, suatu teori yang menjadikan Einstein terkenal pada tahun 1905, yang dipelajari Dirac dari kuliah yang dibawakan oleh C D Broad, seorang profesor filsafat di Universitas Bristol. Sebagian besar makalah yang dibuat Dirac sebagai mahasiswa paska sarjana ditujukan untuk menyajikan bentuk baru dari rumusan yang sudah ada dalam literatur menjadi rumusan yang sesuai (kompatibel) dengan relativitas khusus. Pada tahun 1927 Dirac berhasil mengembangkan teori elektron yang memenuhi kondisi yang disyaratkan oleh teori relativitas khusus dan mempublikasikan persamaan relativistik yang invarian untuk elektron pada awal tahun 1928.

Persamaan Dirac

Persamaan Dirac

Sebagian fisikawan lain sebenarnya memiliki pemikiran yang sama dengan apa yang dilakukan oleh Dirac, meskipun demikian belum ada yang mampu menemukan persamaan yang memenuhi seperti apa yang telah dicapai oleh Dirac. Dia memiliki argumen yang sederhana dan elegan yang didasarkan pada tujuan bahwa teori tranformasinya dapat berlaku juga dalam mekanika kuantum relativistik – sebuah argumen yang menspesifikasikan bentuk umum dari yang harus dimiliki oleh persamaan relativistik ini, sebuah argumen yang menjadi bagian yang belum terpecahkan bagi semua fisikawan. Teori tranformasinya harus memuat persamaan yang tidak hanya berupa turunan waktu, sementara asumsi relativitas mensyaratkan bahwa persamaannya harus juga dapat linier di dalam turunan ruang. Persamaan Dirac merupakan salah satu persamaan fisika yang paling indah. Profesor Sir Nevill Mott, mantan Direktur Laboratorium Cavendish, baru-baru ini menulis,”persamaan ini bagi saya adalah bagian fisika teori yang paling indah dan menantang yang pernah saya lihat sepanjang hidup saya, yang hanya bisa dibandingkan dengan kesimpulan Maxwell bahwa arus perpindahan dan juga medan elektromagnetik harus ada. Selain itu, persamaan Dirac untuk elektron membawa implikasi penting bahwa elektron harus mempunyai spin ½, dan momen magnetik eh/4pm menjadi benar dengan ketelitian mencapai 0,1%.

dirac_21

Persamaan Dirac dan teori elektronnya masih tetap relevan digunakan sampai sekarang. Perkiraan yang dibuatnya telah dibuktikan dalam sistem atom dan molekul. Telah ditunjukkan juga bahwa hal ini berlaku untuk partikel lain yang memiliki spin yang sama dengan elektron seperti proton, hyperon dan partikel keluarga baryon lainnya. konsep ini dapat diterapkan secara universal dan diketahui dengan baik oleh para fisikawan dan kimiawan, sesuatu yang tidak seorangpun dapat membantahnya. Melihat kenyataan ini, Dirac merasa sudah waktunya untuk menyatakan, ”teori umum mekanika kuantum sudah lengkap sekarang …… hukum-hukum fisika yang yang mendasari diperlukannya teori matematika dari bagian besar fisika dan keseluruhan bagian dari kimia telah diketahui secara lengkap.”

Indahnya Fisika

Dirac menunjukkan kemudian bahwa persamaannya ini mengandung implikasi yang tidak diharapkan bagi suatu partikel. Persamaannya memperkirakan adanya antipartikel, seperti positron dan antiproton yang bermuatan negatif, yaitu suatu objek yang saat ini sudah sangat dikenal di laboratorium fisika energi tinggi. Menurut teorinya, semua partikel memiliki antipartikel tertentu yang terkait dengannya. sebagian besar dari antipartikel ini sekarang telah dibuktikan keberadaannya. Positron dan antiproton adalah sebagian kecil dari antipartikel yang sudah sangat dikenal, keduanya dapat berada dalam kondisi stabil di ruang hampa, dan saat ini digunakan secara luas dalam akselerator penumbuk partikel (collider accelerator) yang dengannya fisikawan mempelajari fenomena yang terjadi dalam fisika energi tinggi.

Dirac dan Persamaan Relativistiknya

Dirac dan Persamaan Relativistiknya

Penting diungkapkan di sini keindahan dari persamaan Dirac. Keindahan ini bisa jadi sulit dirasakan oleh orang yang tidak terbiasa dengan rumus-rumus fisika, tetapi kenyataan ini tidak akan dibantah oleh para fisikawan. Persamaan Dirac adalah salah satu penemuan besar dalam sejarah fisika. Melalui pekerjaannya ini, Dirac memberikan prinsip-prinsip dasar yang memuaskan dalam usaha untuk memahami alam semesta kita. Melalui penemuannya ini nama Dirac akan dikenang selamanya sebagai salah satu fisikawan besar. Suatu monumen telah dibangun untuknya atas jasanya membimbing kita kepada pemahaman tentang salah satu aspek penting gaya dasar yang terkandung di alam semesta yang kita diami ini.

Persamaan Dirac dalam bentuk lain

Persamaan Dirac dalam bentuk lain

Nama Dirac akan dimasukkan dalam catatan sejarah fisika atas kontribusi yang diberikannya kepada dunia sains khususnya fisika berupa dasar-dasar mekanika kuantum dan teori transformasi. Penemuannya menempatkan Dirac di jajaran papan atas fisikawan teori sepanjang masa – seorang jenius yang hebat dalam sejarah fisika.

diterjemahkan dari majalah CERN edisi agustus 2002

Johannes Diderik van der Waals, Ilmuwan Belanda

Johannes Diderik van der Waals

Image via Wikipedia

Johannes Diderik van der Waals, Ilmuwan Belanda
Johannes Diderik van der Waals (23 November 1837 – 8 Maret 1923) ialah ilmuwan Belanda yang terkenal “atas karyanya pada persamaan gas cairan”, sehingga ia memenangkan Penghargaan Nobel dalam Fisika pada 1910. van der Waals adalah yang pertama menyadari perlunya mengingat akan volume molekul dan gaya antarmolekul (kini disebut “gaya van der Waals”) dalam mendirikan hubungan antara tekanan, volume, dan suhu gas dan cairan.
Biografi
van der Waals lahir di Leiden, Belanda, sebagai putera Jacobus van der Waals dan Elisabeth van den Burg. Ia menjadi guru sekolah, dan kemuian diizinkan belajar di universitas, karena kurangnya pendidikan dalam bahasa-bahasa klasik. Ia belajar dari 1862 hingga 1865, mendapat gelar dalam matematika dan fisika. Ia menikah dengan Anna Magdalena Smit dan memiliki 3 putri dan 1 putra.
Pada 1866, ia menjadi direktur sekolah dasar di den Haag. Pada 1873, ia mendapatkan gelar doktor di bawah Pieter Rijke atas tesisnya yang berjudul “Over de Continuïteit van den Gas- en Vloeistoftoestand” (Pada Kontinuitas Keadaan Gas dan Cair). Pada 1876, ia diangkat sebagai profesor pertama di Universitas Amsterdam. van der Waals meninggal di Amsterdam pada 1923.

Tokoh Fisika

Albert Einstein

Image via Wikipedia

Albert Einstein
Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan “pengabdiannya bagi Fisika Teoretis”.
Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui ketenaran semua ilmuwan dalam sejarah, dan dalam budaya populer, kata Einstein dianggap bersinonim dengan kecerdasan atau bahkan jenius. Wajahnya merupakan salah satu yang paling dikenal di seluruh dunia.
Pada tahun 1999, Einstein dinamakan “Tokoh Abad Ini” oleh majalah Time. Kepopulerannya juga membuat nama “Einstein” digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya “Albert Einstein” didaftarkan sebagai merk dagang. Untuk menghargainya, sebuah satuan dalam fotokimia dinamai einstein, sebuah unsur kimia dinamai einsteinium, dan sebuah asteroid dinamai 2001 Einstein.
BiografiMasa Muda dan Universitas
Einstein dilahirkan di Ulm di Württemberg, Jerman; sekitar 100 km sebelah timur Stuttgart. Bapaknya bernama Hermann Einstein, seorang penjual ranjang bulu yang kemudian menjalani pekerjaan elektrokimia, dan ibunya bernama Pauline. Mereka menikah di Stuttgart-Bad Cannstatt. Keluarga mereka keturunan Yahudi; Albert disekolahkan di sekolah Katholik dan atas keinginan ibunya dia diberi pelajaran biola.
Pada umur lima tahun, ayahnya menunjukkan kompas kantung, dan Einstein menyadari bahwa sesuatu di ruang yang “kosong” ini beraksi terhadap jarum di kompas tersebut; dia kemudian menjelaskan pengalamannya ini sebagai salah satu saat yang paling menggugah dalam hidupnya. Meskipun dia membuat model dan alat mekanik sebagai hobi, dia dianggap sebagai pelajar yang lambat, kemungkinan disebabkan oleh dyslexia, sifat pemalu, atau karena struktur yang jarang dan tidak biasa pada otaknya (diteliti setelah kematiannya). Dia kemudian diberikan penghargaan untuk teori relativitasnya karena kelambatannya ini, dan berkata dengan berpikir dalam tentang ruang dan waktu dari anak-anak lainnya, dia mampu mengembangkan kepandaian yang lebih berkembang. Pendapat lainnya, berkembang belakangan ini, tentang perkembangan mentalnya adalah dia menderita Sindrom Asperger, sebuah kondisi yang berhubungan dengan autisme.
Einstein mulai belajar matematika pada umur dua belas tahun. Ada gosip bahwa dia gagal dalam matematika dalam jenjang pendidikannya, tetapi ini tidak benar; penggantian dalam penilaian membuat bingung pada tahun berikutnya. Dua pamannya membantu mengembangkan ketertarikannya terhadap dunia intelek pada masa akhir kanak-kanaknya dan awal remaja dengan memberikan usulan dan buku tentang sains dan matematika.
Pada tahun 1894, dikarenakan kegagalan bisnis elektrokimia ayahnya, Einstein pindah dari Munich ke Pavia, Italia (dekat kota Milan). Albert tetap tinggal untuk menyelesaikan sekolah, menyelesaikan satu semester sebelum bergabung kembali dengan keluarganya di Pavia.
Kegagalannya dalam seni liberal dalam tes masuk Eidgenössische Technische Hochschule (Institut Teknologi Swiss Federal, di Zurich) pada tahun berikutnya adalah sebuah langkah mundur dia oleh keluarganya dikirim ke Aarau, Swiss, untuk menyelesaikan sekolah menengahnya, di mana dia menerima diploma pada tahun 1896, Einstein beberapa kali mendaftar di Eidgenössische Technische Hochschule. Pada tahun berikutnya dia melepas kewarganegaraan Württemberg, dan menjadi tak bekewarganegaraan.
Pada 1898, Einstein menemui dan jatuh cinta kepada Mileva Marić, seorang Serbia yang merupakan teman kelasnya (juga teman Nikola Tesla). Pada tahun 1900, dia diberikan gelar untuk mengajar oleh Eidgenössische Technische Hochschule dan diterima sebagai warga negar Swiss pada 1901. Selama masa ini Einstein mendiskusikan ketertarikannya terhadap sains kepada teman-teman dekatnya, termasuk Mileva. Dia dan Mileva memiliki seorang putri bernama Lieserl, lahir dalam bulan Januari tahun 1902. Lieserl Einstein, pada waktu itu, dianggap tidak legal karena orang tuanya tidak menikah.
Kerja dan Gelar Doktor
Pada saat kelulusannya Einstein tidak dapat menemukan pekerjaan mengajar, keterburuannya sebagai orang muda yang mudah membuat marah professornya. Ayah seorang teman kelas menolongnya mendapatkan pekerjaan sebagai asisten teknik pemeriksa di Kantor Paten Swiss pada tahun 1902. Di sana, Einstein menilai aplikasi paten penemu untuk alat yang memerlukan pengetahuan fisika. Dia juga belajar menyadari pentingnya aplikasi dibanding dengan penjelasan yang buruk, dan belajar dari direktur bagaimana “menjelaskan dirinya secara benar”. Dia kadang-kadang membetulkan desain mereka dan juga mengevaluasi kepraktisan hasil kerja mereka.
Einstein menikahi Mileva pada 6 Januari 1903. Pernikahan Einstein dengan Mileva, seorang matematikawan. Pada 14 Mei 1904, anak pertama dari pasangan ini, Hans Albert Einstein, lahir. Pada 1904, posisi Einstein di Kantor Paten Swiss menjadi tetap. Dia mendapatkan gelar doktor setelah menyerahkan thesis “Eine neue Bestimmung der Moleküldimensionen” (“On a new determination of molecular dimensions“) pada tahun 1905 dari Universitas Zürich.
Di tahun yang sama dia menulis empat artikel yang memberikan dasar fisika modern, tanpa banyak sastra sains yang dapat ia tunjuk atau banyak kolega dalam sains yang dapat ia diskusikan tentang teorinya. Banyak fisikawan setuju bahwa ketiga thesis itu (tentang gerak Brownian), efek fotolistrik, dan relativitas khusus) pantas mendapat Penghargaan Nobel. Tetapi hanya thesis tentang efek fotoelektrik yang mendapatkan penghargaan tersebut. Ini adalah sebuah ironi, bukan hanya karena Einstein lebih tahu banyak tentang relativitas, tetapi juga karena efek fotoelektrik adalah sebuah fenomena kuantum, dan Einstein menjadi terbebas dari jalan dalam teori kuantum. Yang membuat thesisnya luar biasa adalah, dalam setiap kasus, Einstein dengan yakin mengambil ide dari teori fisika ke konsekuensi logis dan berhasil menjelaskan hasil eksperimen yang membingungkan para ilmuwan selama beberapa dekade.
Dia menyerahkan thesis-thesisnya ke “Annalen der Physik“. Mereka biasanya ditujukan kepada “Annus Mirabilis Papers” (dari Latin: Tahun luar biasa). Persatuan Fisika Murni dan Aplikasi (IUPAP) merencanakan untuk merayakan 100 tahun publikasi pekerjaan Einstein di tahun 1905 sebagai Tahun Fisika 2005.
Gerakan Brown
Di artikel pertamanya di tahun 1905 bernama “On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid“, mencakup penelitian tentang gerakan Brownian. Menggunakan teori kinetik cairan yang pada saat itu kontroversial, dia menetapkan bahwa fenomena, yang masih kurang penjelasan yang memuaskan setelah beberapa dekade setelah ia pertama kali diamati, memberikan bukti empirik (atas dasar pengamatan dan eksperimen) kenyataan pada atom. Dan juga meminjamkan keyakinan pada mekanika statistika, yang pada saat itu juga kontroversial.
Sebelum thesis ini, atom dikenal sebagai konsep yang berguna, tetapi fisikawan dan kimiawan berdebat dengan sengit apakah atom itu benar-benar suatu benda yang nyata. Diskusi statistik Einstein tentang kelakuan atom memberikan pelaku eksperimen sebuah cara untuk menghitung atom hanya dengan melihat melalui mikroskop biasa. Wilhelm Ostwald, seorang pemimpin sekolah anti-atom, kemudian memberitahu Arnold Sommerfeld bahwa ia telah berkonversi kepada penjelasan komplit Einstein tentang gerakan Brown.
sumber : id.wikipedia

da 1923.